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Abstract 

The joint probability distribution of six structure fac- 
tors for a pair of isomorphous structures [Hauptman 
(1982). Acta Cryst. A38, 289-294] is used for probabil- 
ity calculations in which doublet invariant phase 
information (i.e. phase-difference information) is 
employed as conditional information together with 
intensity data. This information is obtained from the 
structure-factor magnitudes of the structure formed 
by the replacement atoms (assumed to be known) 
and the two isomorphous structures. First, condi- 
tional probability distributions of the triplet 
invariants of the native structure are derived. An 
alternative to the approach of Fortier, Moore & Fraser 
[Acta Cryst. (1985), A41,571-577] is presented, based 
on a new enantiomorph-sensitive distribution. It is 
argued that application of enantiomorph-sensitive 
distributions obtained by restriction of phase 
invariants can be widened by using various enantio- 
morph-defining invariants. Second, the ambiguity in 
single isomorphous replacement is resolved by calcu- 
lating the probability of the two possible solutions as 
was proposed by Fan Hai-fu, Han Fu-son, Qian Jin-zi 
& Yao Jia-xing [Acta Cryst. (1984), A40, 489-495], 
but using a different probabilistic basis. It turns out 
that the formulae of the latter authors are a special 
case of formulae derived in the present paper. 

I. Introduction 

The joint probability distribution of the six structure 
factors in the first neighbourhood of an isomorphous 
pair of structures was derived by Hauptman (1982). 
From this distribution he derived conditional proba- 
bility distributions of the triplet invariants given the 
six-magnitude first neighbourhood. These distribu- 
tions can be used for ab initio phasing, yielding esti- 
mates of triplet phases having the values 0 or rr 
(Hauptman, Potter & Weeks, 1982). Fortier, Weeks 
& Hauptman (1984b) extended Hauptman's work to 
the case of triples of isomorphous structures. Haupt- 
man (1982) pointed out that in single isomorphous 
replacement (SIR) there exist two-phase structure 
invariants ~0h-- ~0h (notated as 8h in the present paper) 
where ~Oh and qJh are the structure-factor phases of 
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the isomorphous pair of structures. Such structure 
invariants (called doublet invariants in the present 
paper) play an important role in the case of SIR when 
the structure-factor magnitudes of the replacement- 
atom substructure are known, since in this case the 
magnitudes of these structure invariants can be calcu- 
lated. By altering Hauptman's (1982) conditional dis- 
tribution [equation (3.12)], Fortier, Moore & Fraser 
(1985) obtained eight distributions corresponding to 
the eight sign combinations associated with I~hl, I~kl 
and 18-  kl. They demonstrated that application of 
the latter distributions instead of Hauptman's condi- 
tional probability distributions eliminates systematic 
errors and yields estimates of the cosine invariants 
in the full range from -1  to +1. In the approach of 
Fan Hai-fu, Han Fu-son, Qian Jin-zi & Yao Jia-xing 
(1984) probability distributions are constructed based 
on the Cochran (1955) distribution which exploit the 
three magnitudes in the first neighbourhood of the 
native protein or the derivative, together with infor- 
mation about doublet invariants ~Oh--Oh or ~bh--Oh 
(notated as eh and Xh respectively in the present 
paper) where Oh is the structure-factor phase of the 
substructure formed by the replacement atoms. For- 
mulae were obtained for the calculation of the sign 
probability of a doublet invariant eh or Xh. Recently 
these authors have extended their original procedure 
by employing the product of the Cochran and the 
Sim (1959) distributions to incorporate partial struc- 
ture information (Fan Hai-fu, Han Fu-son, Qian Jin- 
zi & Yao Jia-xing, 1985). 

In the present paper we shall use Hauptman's 
(1982) joint probability distribution [equation (3.4)] 
of six structure factors in the first neighbourhood to 
derive conditional probability distributions of the 
triplet invariant q~ = ~0h+ ~0k+ ~0-h-k given the six 
magnitudes in the first neighbourhood and the doub- 
let invariants 8h, 8k and 8-h-k or their magnitudes 
(§ 3). We will give an alternative to the method of 
estimating cosine invariants proposed by Fortier et 
al. (1985). In § 4 we follow the method of Fan Hai-fu 
et al. (1984) of calculating the sign probability of 
doublet invariants when the structure formed by the 
replacement atoms is known. However, our prob- 
abilistic basis differs from that of Fan Hai-fu et al., 
making possible the derivation of a joint probability 
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distribution P( t l ,  t2, t3) of the signs of the doublet 
invariants eh, ek and e_h_k. The probability distribu- 
tions (16) and (18) of the sign of the doublet invariant 
eh obtained by Fan Hai-fu et al. (1984) will be com- 
pared with our conditional probability distribution 
P(tl  t2, t3) and marginal distribution P ( h )  respec- 
tively. 

2. Analysis 

2.1. 

In single isomorphous replacement the following 
three structures are of interest if replacement atom 
information is available: the native protein; the 
derivative; and the structure formed by the replacing 
atoms. The three structures have atomic scattering 
powers fj, gj and h i and will be called the f, g and h 
structure respectively. The reciprocal vector hi will 
be denoted by the subscript i. The structure factor F ° 
of the f structure is defined as 

N 

F °=  ~ fj exp [27rihi. rj], (1) 
j = l  

where N is the number of atoms in the unit cell of 
the derivative (the g structure). Note that some of 
the f / s  may be zero. The structure factors G O and H ° 
of the g and h structures are defined analogously, 
w i th f  i replaced by gj and hj respectively. The normal- 
ized structure factors Fi, G~ and Hi are defined by 

1 / 2  F, = F°l .~1/~ G, C°/~o~o 2 0 0 ,  ~ , 

Hi = H°/''~, oo21/2, (2) 

where 

N 
~-~ ,~a b ~ c 

J j  gj n j .  (3) Ol abc 
j = l  

The phases of F~, Gi and Hi are denoted by ¢i, 0i 
and 0i, whereas their magnitudes are denoted by Ri, 
Si and T~. 

In general there are 27 triplet invariants associated 
with three isomorphous structures for the triple of 
reciprocal vectors hi, h2 and h 3 subject to the condi- 
tion h l + h 2 + h 3 = 0  (Fortier et al., 1984b). The com- 
plete set of structure invariants, however, consists of 
the 27 triplet invariants and nine doublet invariants 
8 ,  ei and Xi [i = 1, 2, 3], where 

8i ---- qgi - d, Yi, ei = ¢i - Oi and Xi = O i -  Oi. 
(4) 

The complete set can be generated by a basis set of 
seven selected invariants, e.g. 4), 8 ,  ei [ i =  1, 2, 3], 
where 4) = ¢1 + ¢2 + ¢3. In the present paper we have 
F o 0 0 = Gi - H i .  The formulae of Fortier et al. (1984b) 
are not valid for this case. 

The information associated with the three struc- 
tures consists of measured structure-factor magni- 
tudes whereas the information associated with the h 

structure also includes structure-factor phases. The 
cosines of the doublet invariants 8~ and ei [note that 
X i - - e i -  8i by (4)] are calculated from the structure- 
factor magnitudes according to: 

0 2  0 cos 8 i = (  F°2+IG°12--ln, I )/2F~ IG°I (5) 
O 2  0 

cos  ~,=(-IF°2+IG °~- H i  ) / 2  Fi H°I. (6) 

Probability distributions in which information 
about doublet invariants is incorporated can be 
derived via the distributions P[4), 81,82, 83[Ri, S i  

( i = 1 , 2 , 3 ) ]  and P[ 4), el,  e2, e3lR,,T~ ( i = 1 , 2 , 3 ) ]  
associated with the pairs of structures (f, g) and (f, h) 
respectively. The first distribution is obtained from 
the joint probability distribution P[ Ri, Si, ¢i, ~bi ( i = 
1, 2, 3)] of the magnitudes Ri and Si and the phases 
~i and ~ of the normalized structure factors Fi and 
Gi for the isomorphous pair of structures (f, g), 
derived by Hauptman [1982, equation (3.4)]. The 
primitive random variables are the vectors hi, h2 and 
h 3 subjec t  to the condition hi + h2 + i13 = 0. The second 
distribution is obtained from Hauptman's distribu- 
tion applied to the pair (f, h). Note that this distribu- 
tion is useful even though the f and h structures have 
no atomic positions in common (in this case the f 
and h structures are non-isomorphous) since doublet 
invariant information is available. 

2 . 2 .  

By integrating Hauptman's joint probability distri- 
bution with respect to ~i and ffi from 0 to 27r subject 
to the conditions 4) = ~1 + ~2+ ~3 and 8i = ~i - ~i and 
by fixing the six magnitudes Ri, Si where i runs from 
1 to 3, one may obtain the joint conditional probabil- 
ity distribution of the triplet invariant 4) and the 
doublet invariants 81, 82 and 83: 

P[4), 81,82,831Ri, Si ( i =  1, 2, 3)] 

= C1 exp 2fl }-'. RiSi cos 8i 
i = l  

+2floR1R2R3 cos 4) 

+2~1[S1R2R 3 cos (4) - 81) 

+ RIS2R3 cos (4) - 82) 

+ R1R2S3 cos (4) - 83)] 

+ 2f12[SlS2R3 cos ( 4 ) - 8 , - 8 2 )  

+ S1R2S 3 COS (4) - 81 - -  8 3 )  

+ R1S2S3 cos ( 4 ) - 8 2 - 8 3 ) ]  

+2f13S1S2S3 cos (4) - 81 - 82 - 83)} (7) 

where r ,  f l o , . . . ,  r3 are defined by Hauptman (1982) 
and C1 is a normalizing constant. The set of four 
structure invariants in the argument of (7) is a basis 
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set of structure invariants for the (f, g) pair of struc- 
tures from which the complete set, consisting of eight 
triplet invariants listed by Fortier, Weeks & Haupt- 
man (1984a) and Fortier, Moore & Fraser (1985) and 
three doublet invariants 3,, 32 and 33, can  be gener- 
ated. We will denote these triplet invariants by 12kt,,,, 
where k, l and m take the values 0 or 1 to specify q~ 
or 4  ̀ respectively. As an example, the mixed triplet 
invariant ~0~ + 4,2+ 4`3 is notated as g201t. It is easily 
verified that 

~'~klm "~- ~ - -  kr, - 13 2 - m 3  3 (8) 

for each of the eight triplet invariants. 
The joint conditional distribution 

T~ (i = 1, 2, 3)] (9) 

of the basis-set invariants @ and /3~ ( i =  1, 2, 3) for 
the (f, h) pair can be obtained immediately from (7) 
by employing the required analogy between (7) and 
(9). If the h structure is known its triplet invariants 
are known, so it is advantageous to choose a basis 
set with 19= 0 ,+02+03 as one of the basis-set 
invariants: {19, e~, e2, e3}, for each set of triplet- 
related reciprocal vectors hi, h2 and h 3. The joint 
conditional distribution P[19, e , ,  /32, e3lRi ,  Ti ( i  = 
1, 2, 3)] can be obtained directly from (9) via the 
relation 

( ~ =  19 "~- E,  "+" /32 "~- E 3 (10) 

and reads 

P[19,/3x, e2, e31R,, T, ( i =  1,2,3)1 

{, 
-'-exp 2/3' ~ RiTi cos 6i 

i = l  

+ 2 / 3 ' o R I R 2 R  3 COS (61 + 6 2 +  6 3 +  19) 

+2/3~[RtR2T3 cos (e, + e2+ 19) 

+ R, T2R  3 COS (/31 +/33 + 19) 

+ T, R2R3 cos (/32+/33"+- O)] 

+ 2/3~[ Rt T2 T3 cos (/3, + 19) 

+ T, R2T3cos(e2+19) 

+ T1T2R3cos(/33+19)] 

+ 2/3'3T, T2T3 cos O}. (11) 

The superscript (') indicates that the /3 coefficients 
are now related to the (f, h) pair of structures. 

Integration of(7) with respect to 3~ (i = 1, 2, 3) over 
the range 0 to 2~r leads to P[q~IR~, S~ ( i =  1, 2,3)] 
[Hauptman's  (1982) formula (3.12)]. From (7), we 
will derive conditional distributions in which infor- 
mation about the doublet invariants 3~ ( i =  1, 2, 3) 
[e.g. their magnitudes calculated via (5)] is incorpor- 
ated, whereas (11) will be used to derive distributions 

which exploit known triplet invariants 19 as well as 
information about the doublet invariants e;. 

3. Conditional distributions derived from 
P [ ~ ,  1~1, 1~2 e) 831R/, Si (i = 1, 2, 3)1 

3.1. 

The cosines of the doublet invariants 3~, calculated 
via (5), yield magnitudes 13~[. We shall examine the 
distribution P[q) Ri, S~, 3~ / (i = 1, 2, 3)] in which the 
magnitudes 13~[ are used as conditional information. 
The latter distribution is a marginal distribution of 
P[CrP, S l , S 2 ,  s 3 l R i ,  Si, 13il ( i =  1,2,3)] where s~ is the 
sign of the doublet invanant 3i ( -Tr<3i-<zr) ,  i.e. 
3, = s,13,1. Thus 

p[qb R,, S,, 13,1 ( i =  1,2,3)]  

= E P[ ~, s~, s2, s31R,, S,, 13,1 
Sl ,$2 ,S3 = + I 

( i = 1 , 2 , 3 ) ] .  (12) 

Application of Bayes's theorem leads to 

P[~,s,,s2, s31R,,S,,13, (i= 1,2,3)] 

= P[s,,s2, s3 u,,s,,13,1(i= 1,2,3)3 

xP[~lR, ,S, ,s ,  lS, l( i=l,2,3)].  (13) 

Combination of (12) and (13) yields 

P[~ R,,S,,16,1(i=1,2,3)] 

= Z W ( S , ,  S2,  83) 
$1 ,$2 ,S3 = + i 

x P [ ¢  R,,S,,s, 6, ( i =  1,2,3)]  (14) 

where 

w(s,, s2, s3) -- P[ s,, s2, s3lR,, S,, 13i1 (i = 1, 2, 3)]. 

We arrive at the conclusion that the distribution 
P[~IR, ,  S,, 18,1 ( i =  1,2,3)]  is a weighted sum of the 
eight distributions P[~[Ri, Si, 8~ (i = 1, 2, 3)] corre- 
sponding to the eight sign combinations of the 
doublet invariants 61, 62 and 33. The weighting 
function is the joint conditional distribution 
P[s,, S2, s3lRi, Si, 13,1 (i = 1, 2, 3)3 of the signs of these 
doublet invariants. 

In the following, we will adopt the notation 
M(~IK, K) to specify the yon Mises distribution 

M(~IK, K)=[27rlo(K)]-' e x p [ K  cos ( ~ -  K)] 

of the random variable • with parameters K and K. 
The distribution p[qb Ri, Si, 3~ (i = 1, 2, 3)] follows 

directly from (7) and appears to be a von Mises 
distribution: 

P[~IR, ,S , ,6 , ( i=I ,2 ,3)]=M(~IA,£)  (15) 

where A and ~: follow from (see Appendix I) 

A c o s ~ : = X  A s i n ~ : = Y  A > 0  (16) 



E. A. KLOP, H. KRABBENDAM A N D  J. KROON 813 

and 

X = 2floR1R2R3 

+ 2fl1[SIR2R 3 cos 81 + RIS2R 3 cos 82 

+ RIR2S 3 cos 831 + 2fl2[SlS2R 3 COS (81 + 82) 

+ S IR2S 3c0S(8 i + 8 3 ) + R  1S2S 3c0S (82+83) ] 

+ 2f13S 1 S 2 S  3 COS (81 "1- 82 -3 t- 83) , (17) 

Y = 2f11[S1R2R3 sin 81 + R1S2R3 sin 82 

+ RIR2S 3 sin 83] +2f12[S1S2R3 sin (8~ + 82) 

+ $1R2S3 sin (8~ + 83)+ RIS2S3 sin (82+ 83)] 

+ 2fl3StS2S 3 sin (81 + 82+ 83). (18) 

Io is the modified Bessel function of the first kind 
and of order zero. With 18~[ (i = 1, 2, 3) given, the 
values of X, Y, A and s c corresponding to the sign 
combination st, s2, s3 are specified by subscripts, e.g. 
Asl,~,s~. The distributions (15) corresponding to s~, 
s2, s3 and -s~,  -s2 ,  -s3 have modes at opposite values 
of q0, because 

~ S l  ,$2,S3 = - -  ~ _ , l  , _ S 2 , _ S 3 ,  ( 1 9 )  

and equal variances, since 

As,,s~,s =A_s,,_s~,_s~. (20) 

The weighting function P[s~, s2, s3 R~, Si, [8~ (i = 
1, 2, 3)] is der iwd from the distribution 
P[8~, 82, 83 R~, S~ (i = 1, 2, 3)] which is obtained via 
Bayes's theorem (Appendix II). The result is 

P[sl ,s2,  s3 R,,S, ,  8, ( i =  1 , 2 , 3 ) ] =  LIo(As,.~2.,3). 
(21a) 

The normalizing constant L is given by 

L -1= ~ Io(As,,s2,s,) 
S 1 , S 2 , S 3 = + l  

= 2  Y~ Io(asl,s2,s3 ). (21b) 
Si,Sj='4-1 

i# j  

From (20) and (21a), it is easily verified that the sign 
combination st, s2, s3 has the same probability as the 
combination -s~,  -s2,  -s3.  This is tantamount to the 
enantiomorph ambiguity which should exist since no 
enantiomorph-defining information has so far been 
incorporated in the distributions. 

From (14), (15) and (21a) we obtain 

puqb R,, S,, 8,1 ( i =  1,2,3)] 

= L )-'. Io(As, ,s2,s~) 
S 1 ,S2 ,S3=  + 1 

x M ( t ~ l A s t , s 2 , s 3 ,  6sl,s2,s3). (22)  

Thus it is established that the distribution 
P[~[Ri, Si, 8i (i = 1, 2, 3)] is a multi-modal distribu- 
tion which is symmetrical around zero and which can 
be expressed as a weighted sum of eight von Mises 

distributions. Note that this distribution is derived 
from Hauptman's  joint distribution [1982, equation 
(3.4)], via (7), without adding further approximations 
to those used by Hauptman. 

We will show that this distribution can be approxi- 
mated by a single von Mises distribution for small 
values of the eight parameters Asl.S2.,3. Using the 
approximation exp x ~- 1 + x, we have for small values 
of As,,s2,s3 

P[CI)lRi, S,, 18,1 1,2,3)1 

--~ C2 E [ 1 + Asi,s2,s~COS (qb -- scs,,s~,s3)] 
S 1 ,S2,S3 = =t= 1 

- C3 exp [~ Y. As,,s2,s~cos (q~-  ~:s,,s~,s~)] 
Sl ,S2 ,S3 = + 1 

= M ( * I K ' , K ' ) ,  (23) 

where C 2 and C3 are suitable normalizing constants 
and K ' >  0 with 

K'  exp iK' = -~ Y'. A,, ,s2,s3 exp i¢s, ,S2,S 3 
S 1 ,S2,$3 = + ,  

1 
-~ 7_, X st ,s 2 .s 3 

"K" 

S 1 ,S2 ,S3=  =t= 1 

_1 (24) - -  4 Z X $ 1  ,$2,$3 " 
si,sj=± l 

i# j  

The expressions (I.1) and (I.2) have been used 
together with (16), (19) and (20). 

By (24) it is demonstrated that the mode K' of the 
distribution P[~IR, ,  s,, 18,1 (i = 1, 2, 3)] is restricted 
to 0 or 7r owing to the average of the signs of the 
doublet invariants 8i over the two possible values -1  
and +1. The mode of the distribution P(@IRi, Si 
(i = 1, 2, 3)] was also found to be restricted to 0 or 7r 
(Hauptman, 1982). 

3.2. 

The distribution P[ C'IR,, S,,18,1 ( i = 1 , 2 , 3 ) ]  
examined in § 3.1 is symmetric around zero as a direct 
consequence of the enantiomorph ambiguity. This 
ambiguity will be resolved by assigning arbitrarily a 
sign e to the doublet invariant 83, i.e. s3 = e (e = +1 
or e = -1) .  As before, the magnitude 183 is calculated 
via (5). We will examine the distribution 
PtCI)lR,,S,,la,l,182,a3 ( i = 1 , 2 , 3 ) ]  in which the 
doublet invariant 83 = e 83 with 83 # 0, I7- is used as 
enantiomorph-defining conditional information. 
Analogous to (12), we have 

P[ IR,, S,, 18,1,182,83 (i = 1, 2, 3)] 

= ~. p [ c p ,  s l , s 2 R i ,  S i ,  81,  821,83 
S l , S 2 = + l  

( i = 1 , 2 , 3 ) ] .  (25) 

From the reasoning developed in § 3.1, it is estab- 
lished that the distribution P[4 '  R,, S,, 18,1,1821, 83 
(i = 1, 2, 3)] is not symmetrical around zero and can 
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be expressed as a weighted sum of the four von Mises 
distributions (15) corresponding to the sign combina- 
tions s~, s2, e: 

P [ O R , , S i ,  6~, 8 2 , 6 3 ( i = 1 , 2 , 3 ) ]  

= (L/2) E Io(As,.s2.~) 
Sl ,S2= -t- 1 

x M(qbla,,.s2,~, s ¢: .... ~,~), (26) 

where L is defined in (21b). 
For small As,,s2,e, distribution (26) may be approxi- 

mated by 

M ( O  Ke, K~.) (27a) 

where Ke  > 0 a n d  

K, exp it< e = 1 ~ As, ,s2., exp i~,, .s:.e 
Sl ,S2 = ::1:1 

=Qr+iQ,, (27b) 

where (I.1), (I.2) and (16) have been used. The real 
and imaginary parts Qr and Q~, defined as 

Q~-]  ~, Xsl.s2.e 
St ,S2=-l- l 

(28) 
Q , - ~  Y~ Ys,.s2.e 

S l , S 2 = + I  

respectively, are given in Appendix III, expressed in 
terms of R~, S~ and 8~ [note that Q, is equal to the 
right-hand side of (24)]. By (27b) we conclude that 
the mode t% of the distribution P[ O[Ri, Si ,  1811, 1821, 83 
(i = 1, 2, 3)] is not restricted to 0 or zr, but can take 
any value in the range from 0 to 27r. 

Define the set M~(h3) of triplet invariants 

M~(h3) -- { Oh,.h~.h~} (29) 

where ha is a fixed reciprocal-lattice vector, and hi 
and hz are arbitrary reciprocal-lattice vectors subject 
to the condition hi + hz + ha = 0. The subscript e indi- 
cates that the enantiomorph is fixed by the doublet 
invariant 63 = e 83[ (e = 1 or -1) .  The enantiomorph- 
sensitive distribution (27a) is employed to estimate 
the triplet invariants belonging to the set Me(ha), 

O h l  ,h2.h3 ~ K e .  (30) 

(Note that K~ depends on h~, h2 and h3.) Since the 
variance of a von Mises distribution M(O]A, ~) is a 
decreasing function of the parameter A, the reliability 
of this estimate is smaller, the smaller the value of 
Ke. From (27b) we find the expressions 

cos K~ = Q,/Ke (31a) 

sin Ke = QdKe (31b) 

Ke=(QE+Q2) ~/2 (31c) 

for the cosine and sine invariants and their measure 
of accuracy, Ke. The triplet invariants of any set 
M~(h3), estimated via (30), correspond to the same 
enantiomorph. 

Consider the sets Me(h~) and Me(h~'). The triplet 
invariants of these sets are estimated via (27a) [i.e. 
via (30)], using the enantiomorph definers 83 = 
e 83(h~) I and 83 = e 83(h~' ) respectively. As the enan- 
tiomorph is unknown, 83(h~) and 83(h~) , and hence 
M~(h~) and Me(h~), may correspond to opposite enan- 
tiomorphs. This 'inter-set' sign ambiguity also exists 
in connection with the distributions derived by Pon- 
tenagel (1984) and Pontenagel, Krabbendam & 
Heinerman (1984). In these papers enantiomorph- 
sensitive distributions were derived by restricting a 
structure-invariant phase sum to the range [0, 7r] or 
[Tr, 27r]. Pontenagel et al. (1984) remark: 'As an enan- 
tiomorph can be chosen only once, it is essential to 
state explicitly which invariant phase is restricted. 
This implies that . . .  the derived enantiomorph- 
dependent distributions can only be applied to a 
subset of the available invariants.' Whereas Pon- 
tenagel et al. (1984) restricted just one invariant, we 
propose to restrict more than one invariant even 
though it is unknown whether the different restrictions 
specify the same enantiomorph. The cosine invariants 
of the complete set of available invariants can be 
estimated by employing enantiomorph-sensitive dis- 
tributions, since cosine invariants are enantiomorph- 
insensitive, i.e. they are not affected by the inter-set 
sign ambiguity. As an example, consider the case with 
three restricted invariants, viz 83(h3) , 83(h~) and 
8 tku~ 3~n3J.  The cosine invariants of the se t s  ,.~dl(h3) , 
M~(h~) and M~(h~) are estimated via (31a) and the 
sine invariants of one of the three sets, say ,.~dl(h3) , 
via (31b). In a subsequent phasing procedure struc- 
ture-factor phases are determined from these cosine 
and sine invariants. 

In the previous example, the information provided 
by enantiomorph-dependent distributions is not 
exhausted by employing the sine invariants of only 
one set, together with the cosine invariants of all three 
sets. By employing the remaining sine invariants, i.e. 
the sine invariants of the sets M~(h~) and M~(h~) as 
well, the sign ambiguity of the triplet invariants of 
these sets is replaced by an inter-set sign ambiguity. 
If there are n' and n" triplet invariants in the sets 
M~(h~) and ..~l(h~) respectively, there is a 2("'+"")-fold 
sign ambiguity in the previous example. If the sine 
invariants of the sets M~(h~) and M~(h~') are employed 
as well, this ambiguity is reduced to a fourfold inter- 
set sign ambiguity, which is considerably less severe. 
Thus, with a phasing procedure capable of resolving 
the inter-set sign ambiguity, optimal use is made of 
enantiomorph-dependent distributions. 

3.3. 

Fortier et al. (1985) presented a procedure by which 
cosine invariants in the full range from -1  to +1 can 
be estimated. The distribution defined in their 
equations (9) and (10), which was obtained via 
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modification of Hauptman's  (1982) conditional dis- 
tribution, equation (3.12), is identical to the von Mises 
approximation (23) of the distribution p[t/ ,  Ri, Si, 8i 
(i = 1, 2, 3)] of the present paper. Note that ai , /3i  of 
Fortier et al. (1985) correspond to lsi[, fl~-i in our 
notation. Subsequently, these authors constructed 
four pairs of formulae corresponding to the eight sign 
combinations of a~, a2 and a3 [where a~ = ±(~Pi - ~i)] 
by modifying their distribution (9). 

The fight-hand side of their expression (11) for 
A~ cos O1 is modified to give two new expressions, 
viz (12) and (13). This modification changes the para- 
meter A~ in, say, Z, and shifts the mode from 0 or zr 
to, say, h and - h  for (11) and (12) respectively, where 
the value of h can be significantly different from 0 
or zr. Their equations (12) and (13), however, suffer 
from incorrect notation: the left-hand sides should 
read Z cos (I2~+h) and Z cos ( ~ - A )  respectively, 
instead of At cos ~ .  

It can be verified that the eight distributions which 
were constructed by Fortier et al. (1985) have the 
same functional form as the eight conditional distri- 
butions P[crP[R~, S~, s~]Si[ ( i =  1, 2, 3)] [our distribu- 
tion (15)] with si = +1 (i = 1, 2, 3). However, consider 
the case where the doublet invariants 8~, 82, 83 are 
known both in magnitude and sign (e.g. a starting set 
of doublet invariants). From the construction of the 
eight distributions by Fortier et al. (1985), it is impos- 
sible to determine which distribution should be used 
to estimate the value of the triplet invariant q~, since 
their distributions are expressed in terms of ai, and 
ai = ± 8i. From our derivation it follows that the doub- 
let invariant information can be exploited by estimat- 
ing • via the distribution P[crp[R~, Si, 8i (i = 1, 2, 3)] 
[(15)]. 

Cosine invariants and their measures of accuracy 
were calculated by Fortier et al. (1985) via their 
equations (15) and (16) respectively, which are 
repeated here for convenience: 

4 4 
cos Oav = E Aj cos ~ / E  At (32a) 

j = l  j= l  

4 
Aa~=¼ E Aj cos (max l~ - I2a~) .  (32b) 

j= l  

The subscript j labels those four sign combinations 
s~, s2, s3 for which 

0 -< ~s,,~,~ < I7". (33) 

Instead of comparing these equations directly with 
(31 a) and (31 c) of the present paper we will introduce 
similar equations which can be compared more easily 
with (31a) and (31c). 

By restricting the summations in (22) to the four 
sign combinations for which (33) holds, we obtain 

the following multimodal distribution: 

P [ ~  Aj, ~ ( j = 4 ) ]  

4 
=(L/2) E Io(Aj)M(C, IA~,&). (34) 

j = l  

This distribution is approximated by the von Mises 
distribution 

M ( t J ~ [ K a v ,  Kay) (35a) 

for small A~, with 

4 
Kavexp iKav=¼ ~ Ajexp i~. (35b) 

j = l  

Thus 

and 

4 
cos Ka, = E Aj cos ~/4Ka~ (36) 

j= l  

4 
g a v  = 1  E mjcos(~j-Kav). ( 3 7 )  

j = l  

With the approximation 

4 
Kav"-~ E Aj, (38) 

j = l  

equation (15) [i.e. (32a) of the present paper] of 
Fortier et al. (1985) is obtained from (36), whereas 
their equation (16) [i.e. (32b)] is obtained from (37) 
after replacing the arguments of the cosines in (37) 
by the maximum argument. Instead of Aav and -Oav, 
we will compare Kav and Kay with Ke and K e respec- 
tively. 

From the construction in the Argand diagram cor- 
responding to the equations (24), (27b) and (35b), 
taking into account (19) and (20), it is readily estab- 
lished that 

K '  cos K'= Ke cos K e = Kay COS K a y  (39a) 

or, since K' is restricted to 0 or 7r, 

K ' =  Kelcos Kel = KavlCOS Kavl. (39b) 

The closer the value of Ke (or Kay) to +½7r, the smaller 
the value of K '  and, hence, the larger the variance 
of M(crplK',  K'). This effect, expressed quantitatively 
by (39b), was observed qualitatively by Fortier et al. 
(1985), who remark that 'systematic deviations from 
the 0 or 7r es t imates . . ,  result in a lowering of the A 
value or an increase in the variance.' 

As noted above, the analysis of Fortier et al. (1985) 
started from Hauptman's  [(1982), equation (3.12)] 
distribution P[ ¢~IR,, S, (i = 1, 2, 3)]. This distribution 
is a marginal  distribution of P [ ~ ,  81,82, 83[Ri, Si (i = 
1, 2, 3)] [(7)] and contains therefore less information 
than (7). By their alteration of Hauptman's  distribu- 
tion, Fortier et al. (1985) reconstructed some of the 
information contained in (7) which led to a distribu- 
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tion identical to (23) of the present paper. Subsequent 
alterations of the former distribution produced the 
eight conditional distributions (15) in terms of ai 
instead of 6~. In our approach the formulae of Fortier 
et al. (1985) can be obtained via straightforward 
derivations starting from Hauptman's (1982)joint  
probability distribution, equation (3.1), via our 
distribution (7). Moreover, the new enantiomorph- 
sensitive distribution (26) was derived. 

The equations (15) and (16) of Fortier et al. (1985) 
were obtained by restricting the sign combinations 
according to (33). However, (33) is a rather arbitrary 
restriction criterion, devoid of physical meaning. The 
four contributing terms in the summation in (27b) all 
pertain to the same enantiomorph. The selection 
criterion (33) of Fortier et al. (1985) is thus replaced 
by the physically meaningful criterion of enan- 
tiomorph selection. Sine invariants estimated via 
(35b) [replace cos by sin in (36)] have no physical 
meaning since the contributing terms in (35b) will in 
general correspond to different enantiomorphs. 
Therefore, via (35b), only cosine invariants can be 
estimated. Application of (27b), however, not only 
allows estimation of cosine invariants but also of sine 
invariants (see § 3.2). 

3.4. 

The relation between triplet invariants estimated 
via the von Mises approximations of the distributions 
(22), (26) and (34) was given by (39a) and (39b). 
Although the latter distributions are multimodal in 
general, they can be unimodal depending on the 
parameters A and ~: of the contributing von Mises 
distributions. In the latter case the von Mises approxi- 
mations of the distributions (22), (26) and (34) will 
be relatively good. For some triplet relations, 
however, the approximation may be poor. 

In their treatment of errors in isomorphous replace- 
ment Blow & Crick (1959) have used probability 
distributions of structure-factor phases. They showed 
that phases estimated by the centroids of their distri- 
butions lead to the least mean-square error in electron 
density over the unit cell. As an alternative to estimat- 
ing a triplet invariant via the von Mises approxima- 
tion of its distribution P ( ~ )  we will estimate the 
invariant by the centroid phase ~: of its distribution: 

m exp is t = ~ P(tp) exp (i@) d ¢P p(tp)  d 4. 
0 

(40) 
The magnitude m serves as a measure of the reliability 
of the estimate. 

After substitution of the distributions (22), (26) 
and (34) in the right-hand side of (40) we obtain 
respectively 

m' exp i¢'= L Y. I,(A~,.s2.,~) exp i¢~,.~.~ (41) 
S1,$2,S3= + 1 

me exp i6  = ( L/2) E 
Sl ,S2= '+  1 

It (A,, ,,~,e)exp i~,, ,~,e 

(42) 

4 

ma, ,exp i~av=(L/2)  Y~ I~(Aj) e x p i  6 (43) 
j = l  

where (19), (20) and (1.3) are used and L is defined 
in (21b). I~ is the modified Bessel function of the first 
kind and of order one. 

The relation between the estimates ~:', ~:e and ~:av 
can be obtained from (41)-(43), analogous to the 
derivation of (39a) and (39b) from (24), (27b) and 
(35b). Hence the relations (39a) and (39b) are also 
valid with K', Ke and K a y  replaced by ~', ~:e and scar 
respectively and K',  Ke and Kay by m', me and ma~. 

3.5. 

In §§ 3.1 and 3.2 we derived distributions of the 
triplet invariant 4. This invariant is a member of the 
set of eight triplet invariants {Ok,,,} that exist for the 
(f, g) pair of structures, where ~klm is given by (8). 
(Note that • is the member with klm = 000, so 
may be notated by/2000). A distribution ~)klm of the 
triplet invariant ~'-~klm analogous to a distribution 
of the triplet invariant • may yield the same informa- 
tion as ~. This is the case for the distribution 
P [ ~ I R ,  Si, 6i (i = 1, 2, 3)] [(15)] and the analogous 
distribution Pktm[~k,,lR~, S~, 6, (i - 1, 2, 3)]. The lat- 
ter distribution can be obtained from the former using 
(8) and the expressions in Appendix I, leading to 

Pk,m[ nk,m IR,, s,, 6, (i = 1, 2, 3) ] 

= M (~k , . lAk , . .  ~k,.) (44) 

with 

Aklm = A and ~kt,~ = ~:-- k81 - 162- m63 (45) 

where k, 1 and m take the values 0 or 1 and A and 
~: are given by (16)-(18). 

We conclude that the eight distributions 
Pktm[~k,,,lRi, Sj, 8i (i = 1, 2, 3)] have equal variances 
and are merely shifted with respect to each other over 
known distances. These distributions contain there- 
fore the same information, so no information is lost 
by considering only one member of the eight distribu- 
tions (i.e. one type of triplet invariant). In contrast 
to the latter distributions, the distributions 
Pk,,[~klmlRi, Si (i = 1, 2, 3)] have unequal variances. 
The distributions with klm = 000, 001, 011 and 111 
are given by Hauptman [(1982), equations (3.12), 
(3.16), (3.19) and (3.22) respectively]. Appendix IV 
deals with a simple procedure to obtain the distribu- 
tion Pk, ,[~2k, ,]R,  S~ (i = 1, 2, 3)] with, for example, 
klm = 110, from that with klm = 001 or vice versa. 
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4. Conditional distributions derived from 
P[O, El, e2, e 3 1 R i ,  Ti (i = 1, 2, 3)1 

4.1. 

If the strucutre formed by the replacement atoms 
(h structure) is known, the remaining phase ambiguity 
reads 

~ i  = Oi + e i  (46) 

where -Tr < e~ -< 7r. The phases 0~ are calculated from 
the known h structure, while leil is calculated from 
(6). The remaining sign ambiguity is resolved by 
calculating the probability that the sign of ei is posi- 
tive (negative) as was proposed by Fan Hai-fu et al. 
(1984). However, our analysis differs from the analy- 
sis of these authors in the probabilistic basis used for 
the calculation of the sign probability. Their formulae 
were obtained from Cochran's (1955) distribution, 
whereas our formulae are obtained from Hauptman's  
(1982) joint probability distribution for the SIR case, 
via (11). 

By fixing the known triplet invariant 19, we obtain 
from (11) the joint conditional probability distribu- 
tion of the doublet invariants 81, 82 and 83, 

P[el,  82,831Ri, T/, 19 ( i =  1,2,3)]  
3 

exp {2/3' Y. RiT/cos ei 
i=l 

+2/3~oR1R2R3 cos (81 + E2+ 83+ 19) 

+ 2/3~[RIR2T3 cos (el + 82+ 19) 

+ RIT2R 3 COS (81+ 8 3 +  1 9 )  

+ TIR2R 3 cos (82+ 83+ 19)] 

+ 2/3~[ R, T2 T3 cos (e, + 19) 

+ T1R2T3 COS (82+ 19) 

+ TiT2R3cos(83+19)]}. (47) 

Next, fixing 82 and 83 results in the von Mises distri- 
bution 

P[ellR,, T,,e2, e3, 19 ( i =  1,2, 3)] 

= M(e,IB, ~) (48) 

where B and ~" follow from 

B c o s ~ ' = U  B s i n ~ ' = V  B > 0  
and 

U = 2/3'Rt T1 + 2/3~R1R2R 3 cos (82 + 83 + 19) 

+ 2/3;[ R1 R2 T3 cos (82 + 19) 

+ R, T2R 3 cos (8 3 + 19)] 

+ 2B~R, T2T 3 cos 19 

V= -2/3'oR1R2R 3 sin (82+ 83+ 19) 

-2fl~[RIR2T3 sin (82+ O) 

+ RI T2R3 sin (83+ 19)] 

- 2/3~R1 T2 T3 sin 19. 

(49) 

4.2, 

Let ti be the sign of ei (-Tr < ee -< ~r), i.e. 8~ = t~lei I. 
After fixing 81 in (48), a distribution is derived, 
written as P(tl t2, t3) in short-hand notation, which 
gives the probability of the event that the sign of the 
doublet invariant 81 is q ,  given the doublet invariants 
82 and 83, the triplet invariant O and the magnitudes 
R,, T~ (i = 1, 2, 3) and 181[. With V given by (49) we 
find 

P(qlt2, t3)~-exp(qvsin181[),  (50) 

from which follows 

P(qlt2, t3)=½+½fi tanh(Vsin[el[) .  (51) 

4.3. 

The joint probability distribution of the signs of 
the doublet invariants ei derived from (47) is denoted 
by P(tl ,  t2, t3) and reads 

P( t l ,  t2, t3) 

"-- exp {2fl~glg2g3 cos (tl 811+ t21821+ t31831+ 19) 

+ Eft'l[ R1 R2 T3 cos (tl{e~[ + t21821 + 19) 

+ R, Z2R3 cos (t, lell + t3183[ + 19) 

+ T, R2R3 cos (t2le2{+ t3183{+ 19)] 

+ 2/3][R17"2 T3 cos (tllell+ 19) 

+ TI&T3 cos (t21821 + 19) 

+ TI T2R3 cos (t3183[+ 19)3}. (52) 

It can be established* that ti = si; the possibility of 
using P(q ,  t2,/3) as a weight in (24) or (27b), for 
example, will be a subject of further investigation. 

Formula (51) cannot be used if the signs of 82 and 
83 are unknown. For this case we derive the marginal 
probability distribution P(tl) of the sign tl of the 
doublet invariant 81, 

P ( q ) =  ~, P (h ,  t2, t3), (53) 
t2,t3=5=l 

which gives the probability that tl is positive or nega- 
tive irrespective of the signs t2 and t 3 . Approximating 
exp (x) by 1 + x, we obtain 

P(q)- -½-½q tanh (sin 1811 sin 19 

x[2flroR1g2R3cos 82 cos 183[ 

+ 2/3'1(Rig2 T3 cos 1821 
+ RIT2R3cosIe3[)+2/3~R~T2T3]}. (54) 

* Application of the law of sines to the triangle associated with 
the relation /~i o o = (7 i --  Hi yields In°l/sin a, = [G°l/sin e,. Since 
6, = s,16,[ and ei = t, le, J we have s i = t i. 
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4.4. 

If n triplets h, ki, - h - k ~  with i = l , . . . , n  are 
available, the distribution 

P[eh, ek,, e-h-k, (i = 1 , . . . ,  n)lRh, Rk,, R-h-k,, 

Th, Tk,, T-h-k,, @h.k, ( i =  1 , . . . ,  n)] (55) 

may be used instead of (47). If we approximate the 
former distribution by 

f i  P(eh,  ek,, e-h-k,[Rh, Rk,, R-h-k,, 
i=1 

Th, Tk,, T-h-k , ,  Oh,k,) , (56) 

a von Mises distribution analogous to (48) may be 
derived: 

P[ehlRh, Rk,, R - h - k , ,  Th, Tk,, T-h-k , ,  

e k , , e - h - k , , @ h . k , ( i = l , . . . , n ) ] = M ( e h l B , ~ )  (57) 

where B and ~" follow from 

B c o s s  r = U  B s i n s  r = V  B > 0 ,  

with 

U = 2fl'R~ T~ + ~ {2flPoR]R2iRai cos (e2i + e3i + (9i) 
i=1 

+ 2/3'1[ RIR2 T3, cos (e2, + @,) 

+ Rl TE~R3~ cos (e3i + @i)] 

+ 2fl~gi T2,T3, cos @,} (58) 
i1 

V = Y. - {2fl'oR~R2~R3~ sin (e2~ + e3; + @~) 
i=1 

+ 2fl'~[ R~R2,T3, sin (e2, + @,) 

+ RI T2~R3i sin (e3~ + tg~)] 

+ 2~'~g~ T:,T3, sin @i} 

and where, for example, Rh, Rk, and R_h_k, are 
denoted by R], R2i and Rai respectively. With V given 
by (58), equation (51) still holds. Equation (54) may 
be generalized analogously. 

4.5. 

Formulae (16) and (18) of Fan Hai-fu et al. (1984) 
are to be compared with our formulae (51) and (54). 
The invariant phases el, e2, e3 and ~9 are denoted 
by these authors as -A~pu, A~p.,, A~pH_ u. and ~p~, 
whereas the magnitudes R1, RE and R 3 are denoted 
as [Eu[, [En,[ and [Eu-u,I respectively. The term con- 
taining the product R~R2R3 appears both in the 
aforementioned equations (16) and (18) and in our 
formulae (51) and (54). Note, however, that the 
coefficients differ: /36 in (51) and (54) u s  0"30"23/2 in 
(16) and (18), where 

N 
0"a- ~ J~. (59) 

j=l 

The remaining terms in (51) and (54) do not appear 
in (16) and (18). Probabilities calculated via our 
formulae will deviate more from those calculated by 
Fan Hai-fu et al., the greater the deviations of 13'1 and 
fl~ from 0, and of/3~ from 0"30"23/2, i .e.  the greater 
a aoc and, hence, the more atomic positions are shared 
by the associated structures. Formulae (16) and (18) 
of Fan Hai-fu et al. (1984) represent a special case 
of our formulae, viz the case with aaoc-- 0. 

In the case of isomorphous addition, all atomic 
position vectors of the h structure are different from 
those of the f structure, i.e. aaoc = 0  [with Olab c as 
defined in (3)], implying/36 = 0"30"23/2 and/3'1 -- fl~ = 0 
so that our formulae (51) and (54) reduce to (16) and 
(18) of Fan Hai-fu et al. (1984) respectively. With 
isomorphous substitution, however, the f structure 
and the h structure have atomic position vectors in 
common, so aao~ ~ 0, which implies fl'~ ~ 0 # fl~ and 
~)~;~ 0"30"23/2. For this case our formulae do not 
coincide with those of Fan Hai-fu et al. (1984). 

According to Fan Hai-fu et al. (1984) their analysis 
applies to the (f, h) pair of structures as well as to 
the (g, h) pair of structures. The analysis presented 
in § 4 of the present paper which dealt with the (f, h) 
pair of structures holds equally well for the (g, h) 
pair, leading to sign distributions of the doublet 
invariants Xi analogous to those of 8i. The set of 
atomic position vectors of the h structure is a subset 
of the set of atomic position vectors of the g structure 
so that aob~# 0, i.e. ~ '~#O#fl '2 .  

Partial structure information can be incorporated 
by applying our approach to the (f, h') pair of struc- 
tures [or the (g, h') pair of structures], where the h' 
structure is a known partial structure o f t h e f  structure 
(or the g structure). Again, different formulae are 
obtained from those obtained in a recent paper by 
Fan Hai-fu et al. (1985) who employed the product 
of Cochran's (1955) and Sim's (1959) distributions 
to incorporate partial structure information. 

In conclusion, our formulae (51) and (54) are gen- 
eralizations of equations (16) and (18) of Fan Hai-fu 
et al. (1984). The latter formulae represent the special 
case where the associated structures have no atomic 
positions in common. 

5. Concluding remarks 

Application of a newly derived enantiomorph-sensi- 
tive distribution with SIR data opens up the ability 
to estimate both sine and cosine invariants of well 
defined sets of triplet invariants together with a 
measure of accuracy. Thus, the sign ambiguity of 
individual triplet invariants, present in the procedure 
of Fortier et al. (1985), is reduced to an inter-set sign 
ambiguity. Enantiomorph-sensitive distributions 
derived by restricting phase invariants have a wider 
applicability than conceived by Pontenagel (1984) 
and Pontenagel et al. (1984). The statistical analysis 
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employed in the second part of the paper leads to 
formulae for the resolution of the SIR ambiguity 
which generalize those of Fan Hai-fu et al. (1984). 
Practical tests of the proposed new formulae will be 
published in a later paper. 

A P P E N D I X  I 

Some formulae 

As is well known (Hauptman, 1971), a sum of cosines 
can be expressed as a single cosine by 

A, cos (~ - s c`) = A cos ( ~p - s c ) (I. 1 ) 
i 

where 

A exp i~:=E Aj exp i~j (I.2) 
J 

or, equivalently, 

A2= E E AiAj cos (~:i- ~) 
i j 

A cos s ¢ = ~ Ai cos •i 
i 

A sin ~ = Y, A i sin ~,. 
i 

From Giacovazzo (1980), 
2rr+ot 

exp[inO+AcosO]dO=27rI,(A) (I.3) 
ot 

where I, is the modified Bessel function of the first 
kind and of order n. 

A P P E N D I X  II 

The derivation of e[s l ,  s2, s3lR,, S,, 16,1 (i -- 1, 2, 3)1 

With A and ~ obtained from (16) the distribution 
P[~, 81,82,831R,,S, (i= 1,2,3)] [equation (7)] can 
be expressed as 

P[@, 81, 82, 83]Ri, 5 i ( i=  1,2,3)] 

= C1 exp (2/3 ,=1 ~ R,S, cos 8,) 

x exp [A cos ( ¢ , -  ~:)]. (II.1) 

Next, by application of Bayes' theorem and using 
(15), we obtain 

P[81,82,831R,, S, ( i =  1, 2, 3)] 

p[qb, 81,82,831R,, Si ( i=  1,2,3)] 
P[C~IR,, S,, 8, (i= 1,2,3)] 

=2~rCllo(A) e x p ( 2 f l ~ R , S ,  c o s S , ) . , = l  

(II.2) 

Finally, after fixing 1811, 1821 and }831, (21 a) i s  obtained. 

A P P E N D I X  III 

The real and imaginary parts defined in (28) 

By (17), (18) and (28), we calculate 

Qr = 2floRl R2R3 

+2fll(SIR2R 3 cos 81+ R1S2R3 cos 82 

+ R1R2S 3 cos 63) 

+2fl2(SlS2R 3 cos 81 cos 82 

+ S 1R2S 3 cos 81 COS 8 3 

+ R1S2S3 cos 82 cos 83) 

+2f13SiS2S 3 c o s  81 c o s  8 2 c 0 s  8 3 ;  (III.1) 

Q, = sin 83 [2fllR1R2S3 

+2f12(S1R2S3 cos 81 + RIS2S3 cos 82) 

+2fl3S1S2S3 cos 81 cos 82]. (III.2) 

A P P E N D I X  IV 

The calculation of 
ektm[l'lklmlRi, ,5/ (i -- 1, 2, 3)1 

A simple procedure to obtain the distribution 

P11o[Y211olR,, S, ( /=  1,2,3)] 

from the distribution 

Pod,[ Oooilg,, S, ( i = 1, 2, 3) ] 

consists of interchanging the following parameters: 

Ri <--> S i 

~o ~ ~3 

By this procedure the distributions 

Pllo[J311olR. S, ( i=  1, 2, 3)] 

and 

Ploo[OloolR,, S, ( i =  1 , 2 , 3 ) ]  

are obtained immediately from the distributions 

Pool[/2oollR,, S, ( i =  1,2,3)] 

and 

Poll[Oo,,lR,, Si (i = 1, 2, 3)] 

calculated by Hauptman [1982, equations (3.16)- 
(3.18) and (3.19)-(3.21)]. 
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Abstract 

The validity of the Sayre equation [Sayre (1952). Acta 
Cryst. 5, 60-65] for (3+n)-dimensional  periodic 
structures is examined. A practical procedure is pro- 
posed for the determination of incommensurate 
modulated structures; this is an extension of the direct 
method previously proposed for solving superstruc- 
tures [Fan Hai-fu, He Lao, Qian Jin-zi & Liu Shi- 
xiang (1978). Acta Phys. Sin. 27, 554-558]. With the 
newly proposed method, the phase problem for the 
main as well as the satellite reflections can be solved 
directly without making particular assumptions about 
the modulation. A .known incommensurate modu- 
lated structure, y-Na2CO3, was used in the test. Satis- 
factory results were obtained. 

Introduction 

Incommensurate modulated phases are often found 
in inorganic solids (minerals, alloys, etc.) and organic 
solids. In many cases, the transition to the modulated 
structure corresponds to a chanse of certain physical 
properties. Hence it is essential to know the structure 
of incommensurate phases in order to understand the 
mechanism of the transition and properties in the 
modulated state. Up to the present, methods used in 
the determination of incommensurate modulated 
structures, such as the least-squares method of 
Yamamoto (1982), rely on some assumption about 
the modulation and on a preliminary knowledge of 
the main (average) structure. In this paper a method 
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is described which starts by handling X-ray diffraction 
data and ends in a (3+n)-dimensional  electron 
density map revealing the details of the modulated 
structure objectively. This method is proposed not to 
replace but to combine with the least-squares method 
in a way like that for solving ordinary small molecular 
structures. 

(3 + n)-dimensional description of 
modulated structures 

A modulated structure is a kind of crystal structure 
in which the atoms suffer from certain occupational 
and/or  positional fluctuations according to a periodic 
modulation. In the case that all the wave vectors of 
the modulation wave are commensurate with unit 
vectors of the reciprocal cell, a superstructure results, 
while in the case that the wave vectors are incom- 
mensurate with unit vectors of the reciprocal cell, an 
incommensurate structure is obtained. An n- 
dimensional (n -- 1, 2 , . . . )  periodic modulation corre- 
sponds to an n-dimensional modulated structure. In 
this section, the descriptions of modulated structure 
by de Wolff (1974) and by Yamamoto (1982) are 
briefly reviewed. 

For an n-dimensional modulated structure, the 
reciprocal vector H of a main or satellite reflection 
can be expressed in three-dimensional space as 

H = hla* + h2b* + hac* + ~.. h3+i ki, (1) 
i=1 

where 

k ' =  kila * + k~b* + k~c*. 
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